Abstract

This paper investigates the stabilization of networked control systems (NCSs) with random delays and random sampling periods. Sampling periods can randomly switch between three cases according to the high, low, and medium types of network load. The sensor-to-controller (S-C) random delays and random sampling periods are modeled as Markov chains. The transition probabilities of Markov chains do not need to be completely known. A state feedback controller is designed via the iterative linear matrix inequality (LMI) approach. It is shown that the designed controller is two-mode dependent and depends on not only the currentS-Cdelay but also the most recent available sampling period at the controller node. The resulting closed-loop systems are special discrete-time jump linear systems with two modes. The sufficient conditions for the stochastic stability are established. An example of the cart and inverted pendulum is given to illustrate the effectiveness of the theoretical result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.