Abstract

The frequent starting of large capacity lifting machines and other surge ship electrical loads will result in severe impacts on a shipboard power network, such as voltage and frequency fluctuations. Therefore, a novel stabilization control strategy for shore power systems based on virtual synchronous generator is proposed in this paper, so as to improve the power quality and enhance the stability and reliability of shipboard power networks. In this strategy, a reactive power inertia component is embedded into the virtual synchronous generator aiming at shipboard surge reactive powers. On this basis, a voltage and frequency stability control method is presented to improve the static performances of shore power systems. In addition, a d-q decoupling control scheme in synchronous reference frame for the voltage and current double closed-loop control system is designed, and moreover, the influence of different feedback voltages on the output characteristics of shore power supplies is studied. The theoretical analysis, simulation and experiment results show that, the proposed control strategy can effectively attenuate the frequency and voltage fluctuations, eliminate the frequency and voltage steady-state errors, as well as realize the power distribution evenly for modular shore power supplies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call