Abstract
In this paper we study the asymptotic behavior of solutions of a dissipative coupled system where we have interactions between a Kirchhoff plate and an Euler–Bernoulli plate. The dissipative mechanism is given by memory terms that act either collaboratively (in both equations) or unilaterally (in only one equation). We show that the solutions of this system decay to zero sometimes exponentially and other times polynomially. We found explicit decay rates that depend on the fractional exponents of the memory in each of the following cases: when the memory only acts in the Kirchhoff equation, or only in the Euler–Bernoulli equation, or in both. We also show that all decay rates found are the best. The results obtained are surprising for the following facts: in the collaborative case, the best decay rates of the system are given by the worst decay rates of the uncoupled equations, and in the unilateral case, we conclude that the memory effects in the Euler–Bernoulli equation dissipate the system more slowly than memory effects in the Kirchhoff equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.