Abstract

Magnetite, Fe3O4, nanoparticles, synthesized by hydrothermal microwave assisted technique in continuous flow, are characterized by X-ray diffraction, FTIR and TEM. The suspension stabilization of the nanoparticles dispersed in aqueous media is evaluated by the zeta potential trend and particle size distribution. The effect of the pH, the addition of a phosphate based dispersant and the sonication time on the suspension stabilization are investigated in detail. Moreover, once identified the most stable nanofluid, its thermal properties are measured to evaluate its possible application as heat transfer fluid. The preliminary results indicate a significant enhancement of magnetite water based nanofluid thermal conductivity with respect to water (up to 25%) and conventional water based fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.