Abstract

We study stability of a Schrodinger equation with a collocated boundary feedback compensator in the form of a heat equation with a collocated input/output pair. Remarkably, exponential stability is achieved for both positive and negative gains, namely, as long as the gain is non-zero. We show that the spectrum of the closed-loop system consists only of two branches along two parabolas which are asymptotically symmetric relative to the line Reλ = -Imλ (the 135° line in the second quadrant). The asymptotic expressions of both eigenvalues and eigenfunctions are obtained. The Riesz basis property and exponential stability of the system are then proved. Finally we show that the semigroup, generated by the system operator, is of Gevrey class δ >; 2. A numerical computation is presented for the distributions of the spectrum of the closed-loop system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.