Abstract

We investigate the effect of tunable optical feedback on a commercial DFB laser edge coupled to a Silicon Photonics planar integrated circuit in which a tunable reflector has been implemented by means of a ring resonator based add-drop multiplexer. Controlled optical feedback allows for fine-tuning of the laser oscillation frequency. Under certain conditions it also allows suppression of bifurcation modes triggered by reflections occurring elsewhere on the chip. A semi-analytical model describing laser dynamics under combined optical feedback from the input facet of the edge coupler and from the tunable on-chip reflector fits the measurements. Compensation of detrimental effects from reflections induced elsewhere on a transceiver chip may allow moving isolators downstream in future communications systems, facilitating direct hybrid laser integration in Silicon Photonics chips, provided a suitable feedback signal for a control system can be identified. Moreover, the optical frequency tuning at lower feedback levels can be used to form a rapidly tunable optical oscillator as part of an optical phase locked loop, circumventing the problem of the thermal to free carrier effect crossover in the FM response of injection current controlled semiconductor laser diodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.