Abstract

For linear time-varying systems with bounded system matrices we discuss the problem of stabilizability by linear state feedback. For example, it is shown that complete controllability implies the existence of a feedback so that the closed-loop system is asymptotically stable. We also show that the system is completely controllable if, and only if, the Lyapunov exponent is arbitrarily assignable by a suitable feedback. For uniform exponential stabilizability and the assignability of the Bohl exponent this property is known. Also, dynamic feedback does not provide more freedom to address the stabilization problem. The unifying tools for our results are two finite (L2) cost conditions. The distinction of exponential and uniform exponential stabilizability is then a question of whether the finite cost condition is uniform in the initial time or not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.