Abstract

The United States Pharmacopoeia high-performance liquid chromatographic (HPLC) assay method of buspirone is not able to discriminate buspirone from its degradation products. The purpose of this work is to develop a sensitive, selective, and validated stability-indicating HPLC assay for the analysis of a buspirone hydrochloride in a bulk drug. Buspirone HCI and its potential impurities and degradation products are analyzed on an Ultrasphere C18 column heated to 40 degrees C using a gradient program that contains monobasic potassium phosphate buffer solution (pH 6.9) and acetonitrile-methanol mixture (13:17) of 35% for 5 minutes, then increased to 54% in 5.5 minutes. The samples are monitored using a photo-diode array detector and integrated at 244 and 210 nm. The stress testing of buspirone HCI shows that buspirone acid hydrochloride is the major degradation product. The developed method shows a separation of buspirone degradation product and its potential impurities in one run. The stability of buspirone HCI is studied under accelerated conditions in order to provide a rapid indication of differences that might result from a change in the manufacturing process or source of the sample. The forced degradation conditions include the effect of heat, moisture, light, acid-base hydrolysis, sonication, and oxidation. The compatibility of buspirone HCI with some pharmaceutical excipients is studied under stress conditions. The linear range of buspirone HCI is between 5 and 200 ng/microL with a limit of quantitation of 2.5 ng/microL. The intraassay percentage deviation is not more than 0.38%, and the day-to-day variation was not more than 0.80%. The selectivity, repeatability, linearity, range, accuracy, sample solution stability, ruggedness, and robustness show acceptable values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call