Abstract

For the first time in the reversed field pinch (RFP) configuration, the stability threshold of the ion temperature gradient driven (ITG) mode is studied by linear gyrokinetic theory. In comparison with tokamaks, the RFP configuration has a shorter connection length and stronger magnetic curvature drift. These effects result in a stronger instability driving mechanism and a larger growth rate in the fluid limit. However, the kinetic theory shows that the temperature slopes required for the excitation of ITG instability are much steeper than the tokamak ones. This is because the effect of Landau damping also becomes stronger due to the shorter connection length, which is dominant and ultimately determines the stability threshold. The required temperature slope for the instability may only be found in the very edge of the plasma and/or near the border of the dominant magnetic island during the quasi-single helicity state of discharge

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.