Abstract

In this paper, we consider a pair of delay-coupled limit-cycle oscillators. Regarding the arithmetical average of two delays as a parameter, we investigate the effect of time delays on its dynamics. We show that there exist stability switches for time delays under certain conditions, which do not occur for the corresponding coupled system without time delays. A similar result has been reported for the same delay by Ramana Reddy et al. (Physica D, 129 [1999]), but in the present paper we give more detailed and specific conditions determining the amplitude death for different delays. On the other hand, we also investigate Hopf bifurcations induced by time delays using the normal form theory and center manifold reduction. In the region where the stability switches may occur, we not only specifically determine the direction of Hopf bifurcations but also show that the bifurcating periodic solutions are orbitally asymptotically stable. Numerical simulation results are also given to support the theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.