Abstract

In order to help determine the extent to which side chain interactions within the staphylococcal nuclease beta-barrel affect its global stability, a full set of point mutants was generated for residue 27. Intrinsic tryptophan fluorescence was monitored during solvent denaturation with guanidine hydrochloride (GuHCl) and was used to calculate DeltaGH2O unfolding and m values for each mutant. In the wild type protein, residue 27 is a tyrosine which is at the first position of a type I' beta-turn, and which participates in both hydrophobic interactions and side chain to side chain hydrogen bonding. The hydrophobicity of the mutant residue was found to be the dominant factor in determining global protein stability within this series of nuclease mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.