Abstract

We report a stability scheme of resistive switching devices based on ZnO films deposited by radio frequency (RF) sputtering process at different oxygen pressure ratios. I-V measurements and statistical results indicate that the operating stability of ZnO resistive random access memory (ReRAM) devices is highly dependent on oxygen conditions. Data indicates that the ZnO film ReRAM device fabricated at 10% O2 pressure ratio exhibits the best performance. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) of ZnO at different O2 pressure ratios were investigated to reflect influence of structure to the stable switching behaviors. In addition, PL and XPS results were measured to investigate the different charge states triggered in ZnO by oxygen vacancies, which affect the stability of the switching behavior.

Highlights

  • Resistive random access memory (ReRAM) has intensively attracted much attention, which will become one of the potential candidates in next-generation memory, owing to its advantages, including nonvolatility, high speed, high density, and low power consumption [1,2]

  • In conclusion, the ZnO films prepared by sputtering processes for resistive random access memory (ReRAM) device at different oxygen pressure ratios were measured and investigated

  • The statistical results from the electrical properties indicate that the ZnO ReRAM devices fabricated at the 10% O2 pressure ratio exhibit a very stable I-V behavior with a high operation yield of approximately 75% compared to the other conditions

Read more

Summary

Introduction

Resistive random access memory (ReRAM) has intensively attracted much attention, which will become one of the potential candidates in next-generation memory, owing to its advantages, including nonvolatility, high speed, high density, and low power consumption [1,2]. Optimized conduction in ReRAM applications for the ZnO-based ReRAM is not well investigated yet, whose In this regard, by varying partial pressures of oxygen gases (O2) during sputtering process, native defects related to resistive behavior in the ZnO layer, including oxygen vacancies, Zn vacancies, oxygen interstitials, and Zn interstitials, were investigated in detail, respectively [15,16,17]. By varying partial pressures of oxygen gases (O2) during sputtering process, native defects related to resistive behavior in the ZnO layer, including oxygen vacancies, Zn vacancies, oxygen interstitials, and Zn interstitials, were investigated in detail, respectively [15,16,17] The amount of these defects would significantly affect the resistive switching behaviors of the ZnO layers as well as the stability. Photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) were used to identify the native defects

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.