Abstract
Quality of service (QoS) routing is known to be an NP-hard problem in case of two or more additive constraints, and several exact algorithms and heuristics have been proposed to address this issue. In this paper, we consider a particular two-constrained quality of service routing problem maximizing path stability with a limited path length in the quest of improving routability in dynamic multi-hop mobile wireless ad hoc networks. First, we propose a novel exact algorithm to solve the optimal weight-constrained path problem. We instantiate our algorithm to solve the most stable path not exceeding a certain number of hops, in polynomial time. This algorithm is then applied to the practical case of proactive routing in dynamic multi-hop wireless ad hoc networks. In these networks, an adequate compromise between route stability and its length in hops is essential for appropriately mitigating the impact of the network dynamics on the validity of established routes. Secondly, we set up a common framework for the comparison between three families of proactive routing: the shortest path-based routing, the most stable path-based routing and our proposed most stable constrained path routing. We show then through extensive simulations that routing based on our proposed algorithm selects appropriate stable paths yielding a very high routability with an average path length just above that of the shortest paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.