Abstract

This paper investigates the stability robustness of linear output feedback systems with both time-varying structured (elemental) and unstructured (norm-bounded) parameter uncertainties as well as delayed perturbations by directly considering the mixed quadratically coupled uncertainties in the problem formulation. Based on the Lyapunov approach and some essential properties of matrix measures, two new sufficient conditions are proposed for ensuring that the linear output feedback systems with delayed perturbations as well as both time-varying structured and unstructured parameter uncertainties are asymptotically stable. The corresponding stable region, that is obtained by using the proposed sufficient conditions, in the parameter space is not necessarily symmetric with respect to the origin of the parameter space. Two numerical examples are given to illustrate the application of the presented sufficient conditions, and for the case of only considering both the delayed perturbations and time-varying structured parameter uncertainties, it can be shown that the results proposed in this paper are better than the existing one reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call