Abstract

In this article, we investigate a one-dimensional thermoelastic laminated beam system with nonlinear damping and viscoelastic dissipation on the effective rotation angle and through heat conduction in the interfacial slip equations. Under minimal conditions on the relaxation function and the relationship between the coefficients of the wave propagation speed of the first two equations, we show that the solution energy has an explicit and optimal decay rate from which the exponential and polynomial stability are just particular cases. Moreover, we establish a weaker decay result in the case of non-equal wave of speed propagation and give some examples illustrate our results. This work extends and improves the earlier results in the literature, particularly the result of Mukiawa et al. (2021).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call