Abstract

We consider interpolation methods defined by positive definite functions on a locally compact group G. Estimates for the smallest and largest eigenvalue of the interpolation matrix in terms of the localization of the positive definite function on G are presented, and we provide a method to get positive definite functions explicitly on compact semisimple Lie groups. Finally, we apply our results to construct well-localized positive definite basis functions having nice stability properties on the rotation group SO ( 3 ) .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.