Abstract
We consider a differential equation describing the mass balance in a soil hydrology model with noninvertible Preisach-type hysteresis. We approximate the singular Preisach operator by regular ones and show, as main result, that the solutions of the regularized problem converge to a solution of the original one as the regularization parameter tends to zero. For monotone right hand sides, we prove that the solution is unique. If in addition the external water sources are time periodic, then we find sufficient conditions for the existence, uniqueness, and global asymptotic stability of periodic solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.