Abstract

We treat the stability issue for an inverse problem arising from non-destructive evaluation by thermal imaging. We consider the determination of an unknown portion of the boundary of a thermic conducting body by overdetermined boundary data for a parabolic initial-boundary value problem. We obtain that when the unknown part of the boundary is a priori known to be smooth, the data are as regular as possible and all possible measurements are taken into account, the problem is exponentially ill-posed. Then, we prove that a single measurement with some a priori information on the unknown part of the boundary and minimal assumptions on the data, in particular on the thermal conductivity, is enough to have stable determination of the unknown boundary. Given the exponential ill-posedness, the stability estimate obtained is optimal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.