Abstract
Plant (Class III) peroxidases have numerous applications throughout biotechnology but their thermal and oxidative stabilities may limit their usefulness. Horseradish peroxidase isoenzyme C (HRPC) has good catalytic turnover and is moderately resistant to heat and to excess (oxidizing) concentrations of hydrogen peroxide. In contrast, HRP isoenzyme A2 (HRP A2) has better oxidative but poorer thermal stability, while soybean peroxidase (SBP) displays enhanced thermal stability. Intrigued by these variations amongst closely related enzymes, we previously used maximum likelihood methods (with application of Bayesian statistics) to infer an amino acid sequence consistent with their most recent common ancestor, the 'Grandparent' (GP). Here, we report the cloning and expression of active recombinant GP protein in Escherichia coli. GP's half-inactivation temperature was 45°C, notably less than HRP C's, but its resistance to excess H2O2 was 2-fold greater. This resurrected GP protein enables a greater understanding of plant peroxidase evolution and serves as a test-bed to explore their ancestral properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.