Abstract

We study the stability properties of the Kidder-Scheel-Teukolsky (KST) many-parameter formulation of Einstein's equations for weak gravitational waves on flat space-time from a continuum and numerical point of view. At the continuum, performing a linearized analysis of the equations around flat space-time, it turns out that they have, essentially, no non-principal terms. As a consequence, in the weak field limit the stability properties of this formulation depend only on the level of hyperbolicity of the system. At the discrete level we present some simple one-dimensional simulations using the KST family. The goal is to analyze the type of instabilities that appear as one changes parameter values in the formulation. Lessons learned in this analysis can be applied in other formulations with similar properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.