Abstract

BackgroundPiperaquine, 1,3-bis-[4-(7-chloroquinolyl-4)-piperazinyl-1]-propane, is an anti-malarial compound belonging to the 4-aminoquinolines, which has received renewed interest in treatment of drug resistant falciparum malaria in artemisinin-based combination therapy with dihydroartemisinin. The impurity profile of this drug product is paid an ever-increasing attention. However, there were few published studies of the complete characterization of related products or impurities in piperaquine phosphate bulk and forced degradation samples.MethodsThe impurities in piperaquine phosphate bulk drug substance were detected by a newly developed gradient phase HPLC method and identified by TOF-MS and ESI-MS. The structures of impurities were confirmed by NMR. Forced degradation studies were also performed for the stability of piperaquine phosphate bulk drug samples and the specificity of the newly developed HPLC method. In silico toxicological predictions for these piperaquine phosphate related impurities were made by Toxtree® and Derek®.ResultsTwelve impurities (imp-1–12) were detected and identified, of which eight impurities (imp-1, 2, 4, 6–10) were first proposed as new related substances. Based on TOF-MS/ESI-MS and NMR analysis, the structures of imp-2, 6 and 12 were characterized by their synthesis and preparation. The possible mechanisms for the formation of impurities were also discussed. These piperaquine phosphate related impurities were predicted to have a toxicity risk by Toxtree® and Derek®.ConclusionsFrom forced degradation and bulk samples of piperaquine phosphate, twelve compounds were detected and identified to be piperaquine phosphate related impurities. Two of the new piperaquine phosphate related substances, imp-2 and imp-6, were identified and characterized as 4-hydroxy-7-chloro-quinoline and a piperaquine oxygenate with a piperazine ring of nitrogen oxide in bulk drug and oxidation sample, respectively. The MS data of imp-1, 2, 4, 6–10 were first reported. The in-silico toxicological prediction showed a toxicity risk for piperaquine related impurities by Toxtree® and Derek®.Electronic supplementary materialThe online version of this article (doi:10.1186/1475-2875-13-401) contains supplementary material, which is available to authorized users.

Highlights

  • Piperaquine, 1,3-bis-[4-(7-chloroquinolyl-4)-piperazinyl-1]-propane, is an anti-malarial compound belonging to the 4-aminoquinolines, which has received renewed interest in treatment of drug resistant falciparum malaria in artemisinin-based combination therapy with dihydroartemisinin

  • Detection of impurities by high performance liquid chromatographic (HPLC)-UV/DAD The main aim of this study was to develop a selective and sensitive method for analysis of piperaquine and its related substances originated from the synthesis and forced degradation

  • Twelve impurities of piperaquine phosphate bulk drug were detected by HPLC-UV/DAD, electrospray ionization source (ESI)-MS and TOF-MS

Read more

Summary

Introduction

Piperaquine, 1,3-bis-[4-(7-chloroquinolyl-4)-piperazinyl-1]-propane, is an anti-malarial compound belonging to the 4-aminoquinolines, which has received renewed interest in treatment of drug resistant falciparum malaria in artemisinin-based combination therapy with dihydroartemisinin. Piperaquine has received renewed interest in treatment of drug resistant falciparum malaria, as it has proved to be a suitable partner drug in artemisinin-based combination therapy (ACT) to improve anti-malarial effectiveness and to keep the selection of drug-resistant parasites to minimum [4]. It is commercially available in fixed combination products, mostly with dihydroartemisinin, which are proved to be highly efficacious for treatment of uncomplicated falciparum malaria [5,6]. The piperaquine combination exerted a significant treatment and post-treatment prophylactic effects, indicating that piperaquine is a new partner drug of ACT displaying high efficacy and safety in the treatment of malaria

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call