Abstract
We consider driftless stochastic differential equations and the diffusions starting from the positive half line. It is shown that the Feller test for explosions gives a necessary and sufficient condition to hold pathwise uniqueness for diffusion coefficients that are positive and monotonically increasing or decreasing on the positive half line and the value at the origin is zero. Then, stability problems are studied from the aspect of Hölder-continuity and a generalized Nakao–Le Gall condition. Comparing the convergence rate of Hölder-continuous case, the sharpness and stability of the Nakao–Le Gall condition on Cantor stochastic differential equations are confirmed. Furthermore, using the Malliavin calculus, we construct a smooth solution to degenerate second order Fokker–Planck equations under weak conditions on the coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.