Abstract

In this study, an analytical approach is presented to find stability limits in terms of radial immersion for a given axial depth of cut, and vice versa. Under the assumption of axis-symmetric structure and using the zero order force model, the direction coefficient matrix is decoupled to reduce the 2D milling system to a 1D stability problem. The effect of the radial immersion and radial cutting coefficient on the system stability are explicitly represented through the eigenvalue function of the directional coefficient matrix. The resulting characteristic equation allows the limiting radial immersion be solved for a given axial immersion. A procedure is presented in obtaining the radial stability diagram, in which additional unstable island and secondary lobes are shown to exist besides the traditional lobes. Stability diagrams in both axial and radial immersion are presented to demonstrate the physical insights offered by the presented method. The model is validated by comparing with results from the existing analytical and numerical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call