Abstract

In order to further research the chatter vibration in high-speed milling, in this paper, a new regenerative chatter vibration model, considering the effect of milling force coefficients dependent on the spindle speed (MFCDSS) on the stability of high-speed milling process is proposed, and then milling stability lobe diagram is obtained, based on full-discretization method (FDM). The variable tendency of the stability of milling system is analyzed by comparisons in case of different radial immersion ratios in low-speed and high-speed milling regions, respectively. It is found that great stability predicting differences occur, especially in high-speed region when the MFCDSS is considered. This model can further supplement the theory of stability of high-speed milling process, it has certain engineering guidance significance in the selection of high-speed milling parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.