Abstract
When machining narrow grooves, corners, and other complex cavities with trochoidal milling, the irrationally large trochoidal step usually leads to chatter, while the conservative trochoidal step constrains the machining efficiency. In this paper, a stability prediction model of trochoidal milling is established to solve these problems. An approach considering trochoidal steps and spindle speeds is presented to predict stability boundary of trochoidal milling. With considering the varying cutter-workpiece engagements, the stability of trochoidal milling process is predicted by obtaining the stability lobes of different cutter location (CL) points along the trochoidal milling tool paths. Based on the proposed stability model, a trochoidal step optimization strategy is developed to improve the machining efficiency of trochoidal milling under other parameters in a given situation. Cutting experiments are performed on the machining center GMC 1600H/2 to show the effectiveness of the proposed trochoidal milling stability model. Finally, simulations are adopted to illustrate the optimization strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.