Abstract
The flow characteristics of water columns in pressurized piping systems significantly influence the stability of pumped-storage power stations (PSPSs). However, the complex mathematical representation of the elastic water column often leads to its simplification to a rigid column in stability analyses. This study established elastic and rigid models of a PSPS system based on elastic and rigid water columns, respectively. The stability regions of the governor parameters for these two models were determined and compared. Results indicate that the stability region of the elastic model is smaller than that of the rigid model. Consequently, using a simplified rigid model to evaluate the stability of an actual elastic system would pose potential instability risks. Furthermore, the primary cause of the stability difference between the elastic and rigid models is identified as the water hammer wave velocity. As the wave velocity increases, the stability region of the elastic model expands, eventually approaching that of the rigid model. Lastly, the coupling mechanism between the pressurized pipe and the pumped-storage unit is clarified. The modulus of the water hammer reflection coefficient is proposed to quantify the stability performance of the pumped-storage unit. These findings provide crucial insights for ensuring the stable operation of PSPSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.