Abstract
The viscous contact wave for the compressible Navier-Stokes equations has recently been shown to be asymptotically stable provided that all the L2 norms of initial perturbations, their derivatives and/or anti-derivatives are small. The main purpose of this paper is to study the asymptotic stability and convergence rate of the viscous contact wave with a large initial perturbation. For this purpose, we introduce a positive number l in the construction of a smooth approximation of the contact discontinuity for the compressible Euler equations and then we make the quantity l to be sufficiently large in order to control the growth induced by the nonlinearity of the system and the interaction of waves from different families. This makes for us to estimate the L2 norms of the solution and its derivative for perturbation system without assuming that L2 norms of the anti-derivatives and the derivatives of initial perturbations are small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Mathematicae Applicatae Sinica, English Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.