Abstract
AbstractBased on computer simulations, Kauffman (Physica D, 10, 145‐156, 1984) made several generalizations about a random Boolean cellular automaton which he invented as a model of cellular metabolism. Here we give the first rigorous proofs of two of Kauffman's generalizations: a large fraction of vertices stabilize quickly, consequently the length of cycles in the automaton's behavior is small compared to that of a random mapping with the same number of states; and reversal of the states of a large fraction of the vertices does not affect the cycle to which the automaton moves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.