Abstract

Expansions are obtained for the large Prandtl number structure of the laminar natural convection boundary layer, together with its linear stability characteristics, for the case of a uniform-heat-flux semi-infinite vertical plate. The primary source of instability is shown to arise from a temperature-coupling effect associated with the inner heated region of the boundary layer. Based upon an empirical correlation between the results of linear stability theory and experimentally determined regimes of the turbulent-transition process, it is shown that the flow can be expected to become turbulent before the outer vorticity region of the laminar boundary layer is fully established. The results are generalized to the isothermal plate case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.