Abstract
The stability of idealized shear flow at long wavelengths is studied in detail. A hydrodynamic analysis at the level of the Navier-Stokes equation for small shear rates is given to identify the origin and universality of an instability at any finite shear rate for sufficiently long wavelength perturbations. The analysis is extended to larger shear rates using a low density model kinetic equation. Direct Monte Carlo Simulation of this equation is computed with a hydrodynamic description including non Newtonian rheological effects. The hydrodynamic description of the instability is in good agreement with the direct Monte Carlo simulation for $t < 50t_0$, where $t_0$ is the mean free time. Longer time simulations up to $2000t_0$ are used to identify the asymptotic state as a spatially non-uniform quasi-stationary state. Finally, preliminary results from molecular dynamics simulation showing the instability are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.