Abstract

Encapsulation properties of trypsin from tonggol tuna (Thunnus tonggol) spleen using different materials including alginate (AG), low and high molecular weight chitosan (LC and HC, respectively), and soy lecithin (SL) were studied. The highest encapsulation efficiency and greatest relative activity were found in AG/LC beads after simulated gastric phase (p<.05). AG/LC encapsulated trypsin was used in simulated in vitro gastrointestinal tract for hydrolysis of sodium caseinate, soy protein isolate and fish mince, in which all protein samples were hydrolyzed as indicated by the increased α-amino group content (p<.05). Higher degradation was attained when beads containing trypsin were added. When AG/LC beads packed in blister pack were stored for 8weeks at refrigerated temperature, a 26% decrease in activity occurred. Therefore, encapsulated tonggol tuna spleen trypsin can be prepared using AG/LC to withstand structural breakdown in stomach, but be released as an active protease within intestinal tract. PRACTICAL APPLICATION: Spleen from tonggol tuna is a by-product, which can be used as a source of trypsin, a proteolytic enzyme. The trypsin that was encapsulated within alginate and low molecular weight chitosan beads was released in the intestinal phase and was retained proteolytic activity. Therefore, this encapsulated trypsin can be packaged in capsules and taken as a supplement to aid protein digestion in the gastrointestinal tract, especially for people that need such digestive aids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call