Abstract
This paper studies the stability of Triangular Lagrangian points in the model of elliptical restricted three body problem, under the assumption that both the primaries are radiating. The model proposed is applicable to the well known binary systems Achird, Luyten, αCen AB, Kruger-60, Xi-Bootis. Conditional stability of the motion around the triangular points exists for 0≤μ≤μ∗, where μ is the mass ratio. The method of averaging due to Grebenikov has been exploited throughout the analysis of stability of the system. The critical mass ratio depends on the combined effects of radiation of both the primaries and eccentricity of this orbit. It is found by adopting the simulation technique that the range of stability decreases as the radiation pressure parameter increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.