Abstract

We study the effect of the bending potential on the stability of toroidal and rodlike globules which are typical collapsed conformations of a single stiff-chain macromolecule. We perform numerical calculations in the framework of the bead-stick model of a polymer chain. The intrinsic structure of globules is also analyzed. It was shown that the bending potential affects the packing geometry of bundles in a toroidal globule in the ground state. This potential also influences the bends at the ends of a rodlike globule: both the shape of the loops and the number of bonds in each loop have been investigated numerically as well as by Monte Carlo computer simulations performed for a separate loop. Our main results are (1) the shape of the bending potential could be possibly seen from the geometry of a globule; (2) toroidal globules are always more favorable than the rodlike ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.