Abstract

This paper is concerned with the global exponential stability of time periodic traveling fronts of reaction-advection-diffusion equations with time periodic bistable nonlinearity in infinite cylinders. It is well known that such traveling fronts exist and are asymptotically stable. In this paper, we further show that such fronts are globally exponentially stable. The main difficulty is to construct appropriate supersolutions and subsolutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.