Abstract
Viscous fingering can occur as a three-dimensional disturbance to plane flow of a hot thermoviscous liquid in a Hele-Shaw cell with cold isothermal walls. This work assumes the principle of exchange of stabilities, and uses a temporal stability analysis to find the critical viscosity ratio and finger spacing as functions of channel length, Lc. Viscous heating is taken as negligible, so the liquid cools with distance (x) downstream. Because the base flow is spatially developing, the disturbance equations are not fully separable. They admit, however, an exact solution for a liquid whose viscosity and specific heats are arbitrary functions of temperature. This solution describes the neutral disturbances in terms of the base flow and an amplitude, A(x). The stability of a given (computed) base flow is determined by solving an eigenvalue problem for A(x), and the critical finger spacing. The theory is illustrated by using it to map the instability for variable-viscosity flow with constant specific heat. Two fingering modes are predicted, one being a turning-point instability. The preferred mode depends on Lc. Finger spacing is comparable with the thermal entry length in a long channel, and is even larger in short channels. When applied to magmatic systems, the results suggest that fingering will occur on geological scales only if the system is about freeze.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.