Abstract

Considered herein is the integrable two-component Camassa–Holm shallow water system derived in the context of shallow water theory, which admits blow-up solutions and the solitary waves interacting like solitons. Using modulation theory, and combining the almost monotonicity of a local version of energy with the argument on the stability of a single solitary wave, we prove that the train of N solitary waves, which are sufficiently decoupled, is orbitally stable in the energy space H1(R)×L2(R).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.