Abstract

The spreading of liquid alkanes over surfaces plays an important role in applications such as lubrication, painting, and printing. To make significant advances in these fields, it is essential to increase our understanding of the interactions between alkanes and surfaces. Long-chain alkanes form two typical adsorption structures on a surface--the parallel phase and the standing-up phase. The most thermodynamically stable structure is the parallel phase, in which the alkane molecules lie flat on the surface. If the temperature is slightly below the bulk melting point, then alkanes form a thermodynamically stable standing-up phase on top of an existing parallel layer. At lower temperatures, the standing-up phase becomes metastable. Using atomic force microscopy, we have found that the standing-up alkane layer consists of multiple domains, indicating that the standing-up layer forms through a multinucleation process during the liquid-solid transition on the surface. If, however, the temperature is above the melting point, then we have found that the standing-up layer shrinks to a droplet and leaves a residue on its original position. During the spreading of an alkane droplet, the parallel layer forms on the substrate surface surrounding the droplet by adsorption from the vapor, which precedes the arrival of the liquid. There has been uncertainty, however, as to whether the parallel layer moves with the liquid alkane or remains stationary during spreading. In this study, we used the residue left on the parallel layer as a landmark to monitor the movement of the parallel layer during the spreading of an alkane droplet. Using this landmark, we found that the parallel layer remained stationary on the substrate, indicating that the liquid alkane spreads on a stationary parallel layer surface. Therefore, this study reveals that the surface properties of the parallel layer--not the surface properties of the substrate--control the spreading and wetting of a liquid alkane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.