Abstract

Phase equilibrium between the α-Nb5Si3 and β-Nb5Si3 phases has been studied in the Nb–Mo–Si ternary system. The high temperature β-Nb5Si3 phase is stabilized by Mo additions to yield a relatively narrow α/β two-phase field in the Nb–Mo–Si ternary system. The enthalpy of the α–β phase transformation has been evaluated from the experimentally determined two-phase field boundaries lines in Nb-xMo-37.5Si (x = 0–10) alloys as 21 (±3) kJ/mol-atom. The β-Nb5Si3 phase exhibits a temperature dependent solubility, which results in the formation of Nbss precipitates both in the α- and β-Nb5Si3 matrices. The orientation relationship between Nbss and Nb5Si3 has been identified by transmission electron microscopy. Lattice parameter variation of the β-Nb5Si3 phase suggests that the departure of the β-Nb5Si3 phase from stoichiometry toward (Nb + Mo) compositions is derived from the anti-site substitution of Nb and Mo atoms for Si sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.