Abstract

Scarce research has been performed to assess whether the human maternal gut microbiota undergoes changes during the perinatal period. Therefore, in the present study, gut microbiota composition of seven healthy mothers(to-be) was assessed at different time points during the perinatal period (i.e. weeks 3-7 prepartum and days 3-6, 9-14, and 25-30 postpartum) using quantitative polymerase chain reaction (qPCR) and pyrosequencing, and was complemented by short-chain fatty acids (SCFA) and calprotectin quantification using high-performance liquid chromatography and enzyme-linked immunosorbent assay, respectively. qPCR revealed the predominance of members of the Firmicutes, Bacteroides, and Bifidobacterium without detectable changes over the perinatal period. Pyrosequencing supported these data in terms of microbiota stability for any population at any taxonomic level, although ratios of members of the Actinobacteria and Bacteroidetes differed between the two methods. However, the number of operational taxonomic units observed by pyrosequencing was subjected to fluctuations and the relative abundance of Streptococcus decreased numerically postpartum (P=0.11), which may indicate that aberrancies in subdominant populations occur perinatally. Furthermore, total fecal SCFA concentrations, particularly the branched-chain fatty acids isobutyrate and isovalerate, were higher than for non-pregnant subjects throughout the perinatal period. This suggests metabolic changes and increased energy extraction via proteolytic, in addition to saccharolytic fermentation, accompanied by low-grade inflammation based on fecal calprotectin levels. Our data show that the maternal gut microbiota remained stable over the perinatal period despite altered metabolic activity and low-grade inflammation; however, it remains to be confirmed whether changes preceded earlier during pregnancy and succeeded later postpartum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.