Abstract

An asymmetric incompressible gas flow past a body of revolution was studied in a subsonic wind tunnel. Characteristics of the velocity field at the stern of the experimental model, where a laminar boundary-layer separation and concomitant destabilization of the flow occur under axisymmetric conditions, were determined. Declination of the axis of symmetry of the body within several angular degrees results in a radical change of the time-average velocity field, the amplitude distribution of growing hydrodynamic disturbances, and their spectral distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.