Abstract

The stability of the laminar boundary layer developing on a flat plate in the presence of a periodic row of roughness elements is investigated. A Direct Numerical Simulation is performed to compute the steady flow downstream of the roughness elements, which contains a pair of two counter-rotating streamwise vortices per element, which can be considered as a “pre-streaky” structure. The linear stability of this base flow is analyzed by means of the so-called “biglobal” stability approach. Three-dimensional eigenmodes are found, which are shown to be the continuation of the Tollmien–Schlichting waves present in the case of an unperturbed boundary layer. Moreover, a stabilizing effect due to the roughness-induced vortices is found. A Direct Numerical Simulation of the interaction between a two-dimensional Tollmien–Schlichting wave and the roughness array is also performed. The computed perturbation traveling downstream of the roughness elements is shown to be a linear combination of the biglobal eigenmodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.