Abstract

In this paper we prove that if X X is a Banach space whose Banach-Mazur distance to a Hilbert space is less than 5 + 17 2 \sqrt {\frac {5+\sqrt {17}}{2}} , then X X has the fixed point property for nonexpansive mappings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.