Abstract

With each sequence \(\alpha =(\alpha _n)_{n\in \mathbb{N }}\) of pairwise distinct and non-zero points which are such that the canonical product $$\begin{aligned} P_\alpha (z) := \lim _{r\rightarrow \infty }\prod _{|\alpha _n|\le r}\left( 1-\frac{z}{\alpha _n}\right) \end{aligned}$$converges, the sequence $$\begin{aligned} \alpha ^{\prime } := \bigl (P_\alpha ^{\prime }(\alpha _n)\bigr )_{n\in \mathbb{N }} \end{aligned}$$is associated. We give conditions on the difference \(\beta -\alpha \) of two sequences which ensure that \(\beta ^{\prime }\) and \(\alpha ^{\prime }\) are comparable in the sense that $$\begin{aligned} \exists \,c,C>0:\quad c|\alpha ^{\prime }_n| \le |\beta ^{\prime }_n| \le C|\alpha ^{\prime }_n|, \quad n\in \mathbb{N }. \end{aligned}$$The values \(\alpha ^{\prime }_n\) play an important role in various contexts. As a selection of applications we present: an inverse spectral problem, a class of entire functions and a continuation problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.