Abstract

The stabilities of the bacterial community structures supported by seven full-scale biological reactors treating pharmaceutical wastewater were investigated by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplified 16S rRNA gene fragments. Effluent quality from this treatment process was consistently high with respect to BOD 5 (<30 mg l −1), soluble COD (<500 mg l −1), and total ammonia (< 5 mg l −1 as N) concentrations. Long-term community structure stability was studied by comparing the similarity of PCR-DGGE fingerprints from samples collected 87 days apart between which the influent wastewater characteristics were relatively stable. The Dice index ( C s) of similarity was moderately high for the first four reactors ( C s=0.61–0.77) and very high for the last three reactors ( C s=0.89–0.91). Short-term community structure stability was studied by comparing PCR-DGGE fingerprints from samples collected 15 days apart between which the influent wastewater characteristics changed significantly, while the effluent quality remained consistently high. The bacterial community composition of each of the seven bioreactors showed a moderate community shift ( C s=0.70–0.76). Short-term variability in influent wastewater composition, therefore, affected a greater community shift than did long-term operation treating a wastewater of relatively consistent composition. These results indicate that functionally stable wastewater treatment bioreactors have stable microbial community structures under normal operating conditions but are able to adapt in response to perturbations to sustain high effluent quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.