Abstract

Summary. To evaluate our formal verification method on a real-size calculation circuit, in this article, we continue to formalize the concept of the 4-2 Binary Addition Cell primitives (FTAs) to define the structures of calculation units for a very fast multiplication algorithm for VLSI implementation [11]. We define the circuit structure of four-types FTAs, TYPE-0 to TYPE-3, using the series constructions of the Generalized Full Adder Circuits (GFAs) that generalized adder to have for each positive and negative weights to inputs and outputs [15]. We then successfully prove its circuit stability of the calculation outputs after four-steps. The motivation for this research is to establish a technique based on formalized mathematics and its applications for calculation circuits with high reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.