Abstract
The stability of synchronous states is analyzed in the context of two populations of inhibitory and excitatory neurons, characterized by two different pulse-widths. The problem is reduced to that of determining the eigenvalues of a suitable class of sparse random matrices, randomness being a consequence of the network structure. A detailed analysis, which includes also the study of finite-amplitude perturbations, is performed in the limit of narrow pulses, finding that the overall stability depends crucially on the relative pulse-width. This has implications for the overall property of the asynchronous (balanced) regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.