Abstract

The coupled transport of copper(II) ions through supported liquid membranes (SLM) was examined in zeroth order steadystate kinetic regime using Acorga P-50 as carrier. SLM life-times were estimated using a new method based on kinetic analysis. The influence of different experimental conditions on the transport rate allowed to establish various factors determining membrane stability. SLM life-time seems to depend in a clearcut way on both the type of polymeric support and the nature of liquid membranes suggesting that solute-solvent (and polymer solvent) interactions play a dominant role in membrane stability. It was shown that water transport, if any, occurs only through empty pores of the polymeric support. No clear effect of osmotic pressure gradient on liquid membrane stability was found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.