Abstract

The Camassa–Holm equation with linear dispersion was originally derived as an asymptotic equation in shallow water wave theory. Among its many interesting mathematical properties, which include complete integrability, perhaps the most striking is the fact that in the case where linear dispersion is absent it admits weak multi-soliton solutions–“peakons”–with a peaked shape corresponding to a discontinuous first derivative. There is a one-parameter family of generalized Camassa–Holm equations, most of which are not integrable, but which all admit peakon solutions. Numerical studies reported by Holm and Staley indicate changes in the stability of these and other solutions as the parameter varies through the family.In this article, we describe analytical results on one of these bifurcation phenomena, showing that in a suitable parameter range there are stationary solutions–“leftons”–which are orbitally stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.