Abstract

A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of orderR−1in the boundary-layer Reynolds numberR. In Blasius flow, the present approach is consistent with that of Bertolottiet al.(1992) toO(R−1) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis toO(R−1) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated.However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal orderR−1except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.