Abstract

In this paper, we study the stability of solutions to systems of differential equations with discontinuous right-hand sides. We have investigated nonlinear and linear equations. Stability sufficient conditions for linear equations are expressed as a logarithmic norm for coefficients of systems of equations. Stability sufficient conditions for nonlinear equations are expressed as the logarithmic norm of the Jacobian of the right-hand side of the system of equations. Sufficient conditions for the stability of solutions of systems of differential equations expressed in terms of logarithmic norms of the right-hand sides of equations (for systems of linear equations) and the Jacobian of right-hand sides (for nonlinear equations) have the following advantages: (1) in investigating stability in different metrics from the same standpoints, we have obtained a set of sufficient conditions; (2) sufficient conditions are easily expressed; (3) robustness areas of systems are easily determined with respect to the variation of their parameters; (4) in case of impulse action, information on moments of impact distribution is not required; (5) a method to obtain sufficient conditions of stability is extended to other definitions of stability (in particular, to p-moment stability). The obtained sufficient conditions are used to study Hopfield neural networks with discontinuous synapses and discontinuous activation functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call